NEET'25

CHEMISTRY

CHEMICAL BONDING AND MOLECULAR STRUCTURE

<u>ലെയാളത്തിൽ</u>

PART 3

FRI I 9:00 PM LIVE


Phys One

FOR NEET/KEEM ENTRANCE EXAM

BATCH 2023 - 24

WITH BOOKS - BATCH FEE BATCH FEE FOR ONE YEAR ALL SUBJECTS

FEE

BATCH FEE FOR ONE YEAR ALL SUBJECT

EXAM WINNER விழ்வே JOIN வெறிரி

WHATSAPP HI TO

975 920 920 22

AICl₃ is covalent while AIF₃ is ionic. This fact can be justified on the basis of

- (1) Valence bond theory (2) Crystal structure
- 3) Lattice energy (4) Fajan rules

Highest melting point would be of (1) AlCl₃ (2) LiCl (3) NaCl (4) BeCl₂

As compared to covalent compounds electrovalent compounds generally possess

- (1) High m.p. and high b.p.
- (2) Low m.p. and low b.p.
- (3) Low m.p. and high b.p.
- (4) high m.p. and low b.p.

The most covalent halide is:-

(1) AlF₃ (2) AlCl₃

 $(3) AlBr₃ \qquad (4) AlI₃$

Which of the compound is least soluble in water

(1) AgF (2) AgCl

(3) AgBr (4) AgI

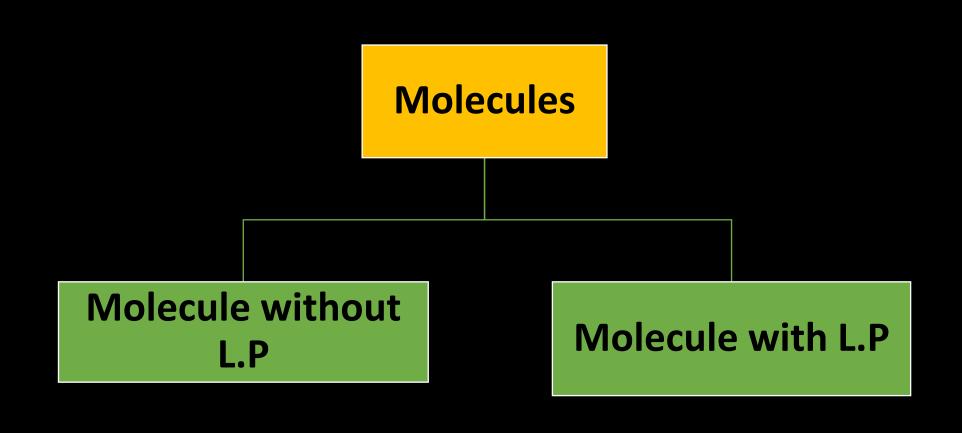
Which of the following would have maximum dipole moment?

$$(3) \bigcirc CI \bigcirc C$$

$$(4) \bigcirc CI \bigcirc C$$

BeF₂ has zero dipole moment where as H₂O has a dipole moment because :-

- (1) Water is linear
- (2) H₂O is bent
- (3) F is more electronegative than O
- (4) Hydrogen bonding is present in H₂O


The dipole moment of NH_3 is:-

- (1) Less than dipole moment of NCl₃
- (2) Higher than dipole moment of NCl_3
- (3) Equal to the dipole moment of NCl₃
- (4) None of these

Valence shell electron pair repulsion theory (VSEPR)

Sidgwick & Powell

Nyholm & Gillespie-

Molecules without lone pair

Molecule type	Geometry	Bond angle
AB ₂		
AB ₃		

Molecule type	Geometry	Bond angle
AB ₄		
AB ₅		

Molecule type	Geometry	Bond angle
AB ₆		
AB ₇		

Molecules with lone pair

Molecule type	Geometry
AB_2L_1	
AB_2L_2	

Molecule type	Geometry
AB ₂ L ₃	
AB ₃ L ₁	

Molecule type	Geometry
AB ₃ L ₂	
AB ₄ L ₁	

Molecule type	Geometry
AB_6L_1	
AB ₅ L ₁	

Molecule type	Geometry
AB ₄ L ₂	

Incorrect about PCI₅ molecules is :-

-) Three P-Cl bond lie in equatorial plane
- 2) Two P-Cl bond lie in axial plane
- (3) Axial bond pairs suffer more repulsive interaction from the equatorial bond pair
- (4) Equatorial bonds are longer than the axial bonds

Number of 120° bond angles present in BF₃ is

(1) 4 (2) 5

(3) 2 (4) 3

The shape of CIF₃ molecule is

- (1) See-saw
- (2) Bent T-shape
- (3) Bent (V-shaped)
- (4) Trigonal planar

Shape of XeF₄ is

- (1) Spherical (2) Trigonal bipyramidal
- (3) Square planar (4) Tetrahedral

Bond angle in water molecules is 104.5° instead of 109°28′ mainly because of

- (1) Lone pair-bond pair repulsion
- (2) Bond pair-lone pair repulsion
- (3) Lone pair-lone pair repulsion
- (4) Bond pair-bond pair repulsion

In a regular octahedral molecule of SF₆ the number of F–S–F bonds at 180° is

(1) Four

(2) Three

(3) Two

(4) Six

Which of the following has least bond angle?

(1) CH₄ (2) BF₃

(3) H_2O (4) NH_3

Shape of a molecule having 4 bond pairs and two lone pairs of electrons, will be :-

(1) Square planar (2) Tetra hedral

(3) Linear (4) Octa hedral

Which of the following having a square planar structure is

(1) NH₄

(2) BF_4^-

(3) XeF₄

(4) CCl₄

Select the correct matching:			
List I		List II	
$A: XeF_4$	 Pyra 	amidal	
B: XeF ₆	2. T-sh	nape	
$C: XeO_3$	3. Dist	orted octahedral	
D: XeOF ₂	4. Squ	are planar	
A B	C	D	
(1) 4 3	1	2	
(2) 1 2	3	4	
(3) 2 1	3	4	
(4) 4 1	3	2	